

DRG-AR-DC DC Input, Field Configurable Limit Alarm

Instruction Sheet M2399/0796

DESCRIPTION

The DRG-AR-DC is a DIN rail mount, DC voltage or current input limit alarm with dual setpoints and two contact closure outputs. The field configurable input and alarm functions offer flexible setpoint capability. Input voltage spans from 10mV to 200V and input current spans from 1mA to 100mA can be field configured. Bipolar inputs are also accepted.

The DRG-AR-DC is configurable as a single or dual setpoint alarm, with HI or LO trips and failsafe or non-failsafe operation. Also included are adjustable deadbands (0.25 to 5% of full scale input) for each setpoint, a 24VDC voltage source (isolated from line power) for transducer excitation, and a flexible DC power supply which accepts any voltage between 9 and 30VDC.

DIAGNOSTIC LEDS

The DRG-AR-DC is equipped with three front panel LEDs. The green LED is a dual function LED labeled INPUT. This LED indicates line power and input signal status. Active DC power is indicated by an illuminated LED. If this LED is off, check DC power and wiring connection. If the input signal is more than 110% of the full scale range, the LED will flash at 8 Hz. Below 0%, the flash rate is 4 Hz.

Two red LEDs indicate the relay state for each setpoint. An illuminated red LED indicates the tripped condition.

OUTPUT

The DRG-AR-DC is equipped with two SPDT (form C) relays, rated at 120VAC or 28VDC at 5 amperes. Each of these relays is independently controlled by the field configurable setpoint and deadband.

OPERATION

The field configurable DRG-AR-DC limit alarm setpoints can be configured for HI or LO, failsafe or nonfailsafe operation. Each of the setpoints has a respective HI or LO deadband. In a tripped condition, the setpoint is exceeded and the appropriate red LED will illuminate. The trip will reset only when the process falls below the HI deadband or rises above the low deadband (see Figure 1). For proper deadband operation, the HI setpoint must always be set above the LO setpoint. In failsafe operation, the relay is energized when the process is below the HI setpoint or above the LO setpoint (opposite for nonfailsafe). In the failsafe mode, a power failure results in an alarm state output.

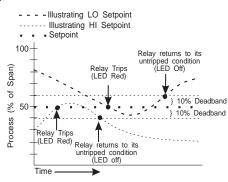


Figure 1: Limit alarm operation and effect of deadband(s).

DYNAMIC DEADBAND

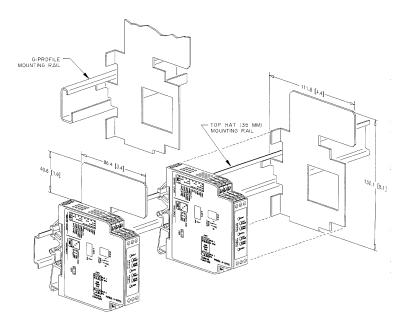
LSI circuitry in the DRG-AR-DC prevents false trips by repeatedly sampling the input. The input must remain beyond the setpoint for 100 milliseconds, uninterrupted, to qualify as a valid trip condition. Likewise, the input must fall outside the deadband and remain there for 100 milliseconds to return the alarm to an untripped condition. This effectively results in a "dynamic deadband" —based on time— in addition to the normal deadband.

CONFIGURATION

Unless otherwise specified, the factory presets the Model DRG-AR-DC as follows:

Input: Current
Range: 0-20mA
Output: Dual, SPDT
Trip: A:HI, B:LO

Failsafe: No


Deadband: A, B: 0.25%

The DC power input accepts any DC source between 9 and 30V, typically a 12V or 24VDC source is used.

For other I/O ranges, refer to Table 1 and Figure 4. Reconfigure switche SW1 for the desired input type, range and function.

WARNING: Do not attempt to change any switch settings with power applied. Severe damage will result!

- 1. With DC power off, set positions 9 and 10 of switch "SW1" for current or voltage.
- 2. Set position 1 through position 4 of input range switch "SW1" for the desired input range (see Table 1).
- 3. Set position 5 of input range switch "SW1" to ON for unipolar (e.g. zero based, 0-20mA) range or OFF for bipolar (e.g. -100% offset, -20 to 20mA) range (see Figure 4).
- 4. Set position 6 and 7 of input range switch "SW1" to ON for a HI trip setpoint or OFF for a LO trip setpoint (see Figure 4).
- 5. Set position 8 of input range switch "SW1" to ON for non-failsafe operation or OFF for failsafe operation (e.g. alarm trips upon power failure).

Note1: All DRG Series modues are designed and tested to operate in ambient temperatures from 0 to 55°C, when mounted on a horizontal DIN rail. When five or more modules are mounted on a vertical rail, circulating air or model DRG-HS01 Heat Sink is recommended.

CALIBRATION

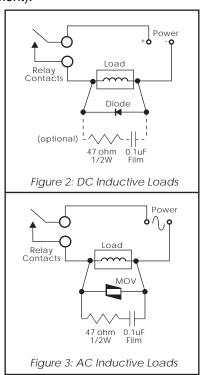
1. After configuring the DIP switches, connect the input to a calibrated DC source and apply power. Refer to the terminal wiring (Figure 7).

Note: To maximize thermal stability, final calibration should be performed in the operating installation, allowing approximately 1 to 2 hours for warm up and thermal equilibrium of the system.

- 2. Setpoint: set deadband at its minimum (fully counter clockwise) before adjusting the setpoint. With the desired trip voltage or current input applied, adjust setpoint until the relay trips. For HI trip calibration, start with the setpoint above the desired trip (full clockwise). For LO trip calibration, start below the desired trip (full counter clockwise).
- 3. Deadband: Set deadband to its minimum (fully counter clockwise). Set the setpoint to desired trip. Adjust voltage/current input until relay trips. Readjust deadband to 5% (fully clockwise). Set voltage/current input signal to desired deadband position. Slowly adjust deadband until relay untrips.

RELAY PROTECTION AND EMI SUPPRESSION

When switching inductive loads, maximum relay life and transient EMI suppression is achieved using external protection (see Figures 2 and 3). Place all protection devices directly across the load and minimize all lead lengths. For AC inductive loads, place a properly-rated MOV across the load in parallel with a series RC snubber. Use a 0.01 to


Table 1: DRG-AR-DC Input Range switch settings (SW1 through 4)

Input Range Selector

KEY I = ON

Voltage	Current	input Range Selector					
		(SW1) 1	2	3	4	9	10
10mV	1mA						
20mV	2mA						
50mV	5mA						
100mV	10mA						
200mV	20mA						
500mV	50mA						
1V	100mA						
2V							
5V							
10V							
20V							
50V		I					
100V		- 1					
200V		ı					
TYPE							
Current							
Voltage							
		•					

 $0.1\mu F$ pulse film capacitor (foil polypropylene recommended) of sufficient voltage, and a 47Ω , 1/2W carbon resistor. For DC inductive loads, place a diode across the load (PRV > DC supply, 1N4006 recommended) with (+) to cathode and (-) to anode (the RC snubber is an optional enhancement).

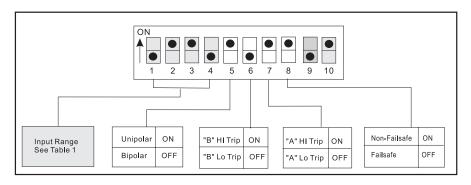
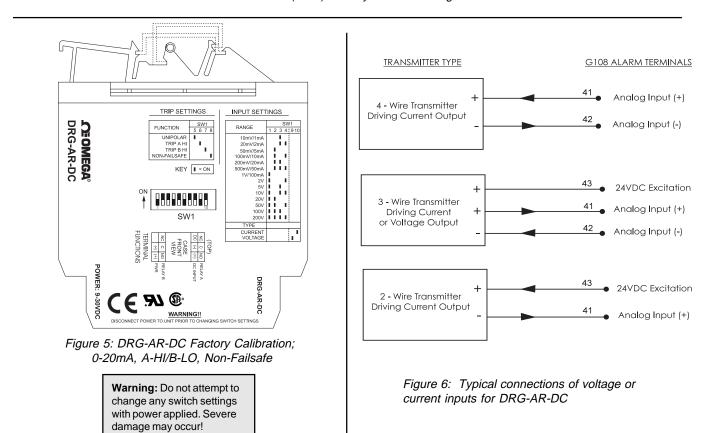



Figure 4: DRG-AR-DC Input Range/Function Selection (SW1) Factory Default Settings

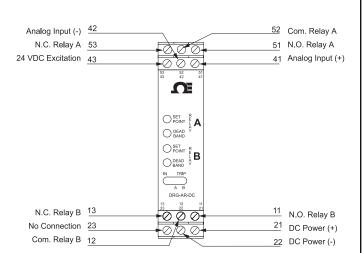


Figure 7: Terminal Wiring Diagram for DRG-AR-DC

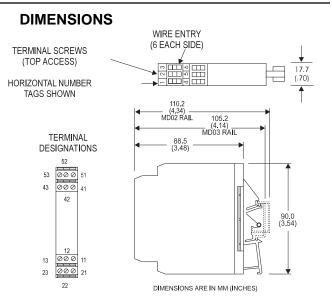


Figure 8: Mechanical Dimensions for DRG-AR-DC

SPECIFICATIONS

Inputs

Voltage Input

Range: 10mV to +200V Impedance: >100K Ω

Overvoltage: 200V rms, max.

Current Input

Range: 1mA to ±100mA Impedance: 20Ω , typical

Overcurrent: 170mA rms, max.

Overvoltage: 60VDC

(protected by self resetting fuse) Common Mode (Input to Ground):

1800VDC, max.

LED Indicators

Input Range (Green) >110% input: 8Hz flash <0% input: 4Hz flash

Setpoint (Red) Tripped: Solid red

Safe: Off

Limit Differentials (Deadbands)

>50mV/5mA: 0.25% to 5% of span <50mV/5mA: 1% to 5% of span

Response Time

Dynamic Deadband: Relay status will change when proper setpoint/process condition exists for 100msec.

Normal Mode (analog filtering): <250mSec, (10-90%)

Setpoints

Effectivity: Setpoints are adjustable over 100% of the selected input

span.

Repeatability (constant temp.): >50mV/5mA: 0.1% of full scale <50mV/5mA: 0.2% of full scale

Stability

Temperature: ±0.05% of full

scale/°C, max. **Excitation Voltage**

24VDC, 20mA, maximum **Common Mode Rejection**

DC to 60Hz: 120dB

Isolation

1800VDC between contacts, input

and power

EMC Compliance (CE Mark)

Emmissions: EN50081-1 Immunity: EN50082-2 Safety: EN50178

Humidity (Non-Condensing)

Operating: 15 to 95% (@45°C) Soak: 90% for 24hours (@65°C)

Temperature Range¹

Operating: 0 to 55°C (32 to 131°F) Storage: -25 to 70°C (-13 to 158°F)

Consumption: 1.5W typical,

2.5W max.

Supply Range: 9 to 30VDC,

inverter isolated

In-rush Current: 300mA, max.

Relay Contacts

2 SPDT (2 form C) Relays

1 Relay per setpoint

Current Rating (resistive)

120VAC: 5A 240VAC: 2A 28VDC: 5A

Material: Silver-Cadmium Oxide Electrical Life: 105 operations

at rated load

Note: External relay contact protection is required for use with inductive loads (see

Figures 2 & 3).

Mechanical Life: 107 operations

Wire Terminations

Screw terminations for 12-22 AWG

Agency Approvals

CSA certified per standard C22.2, No. 142-M198 (File 0-M91 and No.LR42272) UL recognized per standard per standard UL508 (File No.E99775). CE conformance per EMC directive 89/336/EEC and Low Voltage 73/23/EEC (Input≤75VDC, only).

Mounting

32mm and 35mm DIN Rail

PIN CONNECTIONS

N.O. Relay B

Com. Relay B 12

N.C. Relay B 13

DC Power (+) 21

DC Power (-) 22

23 No Connection

41 Analog Input (+)

42 Analog Input (-)

(+) 24VDC Excitation

omega.com

OMEGAnetSM On-Line Service

Servicing North America: One Omega Drive, Box 4047

ISO 9001 Certified Stamford, CT 06907-0047

Telephone: (203) 359-1660

e-mail:info@omega.com

Fax: (203) 359-7700

976 Bergar Laval (Quebec) H7L 5A1 Telephone: (514) 856-6928

Fax: (514) 856-6886

e-mail: canada@omega.con For immediate technical sevice or application assistance:

Sales Service: $1-800-826-6342 / 1-800-TC-OMEGA^{SM}$ Customer Service: $1-800-622-2378 / 1-800-622-BEST^{SM}$ Engineering Service: 1-800-872-9436 / 1-800-USA-WHENSM TELEX: 996404 EASYLINK: 62968934 CABLE: OMEGA

Mexico and Latin America:

Benelux:

Tel: (95) 800-TC-OMEGASM En Espanol: (203) 359-1660 ext. 2203 e-mail: espanol@omega.com

Fax: (95) 203-359-7807

Servicing Europe: Postbus 8034, 1180 LA Amstelveen, The Netherlands

Tel: (31) 20 6418405 Toll Free in Benelux: 06 0993344

e-mail: nl@omega.com

Ostravska 767, 733 01 Karvina Tel: 42 (69) 6311899

Fax: 42 (69) 6311114

Fax: (31) 20 6434643

Czech Republic:

9, rue Denis Papin, 78190 Trappes

Tel:33 0130-621-400 Toll Free in France: 05-4-06342

e-mail: france@omega.com

Fax: 33 0130-699-120

Germany/Austria:

Daimlerstrasse 26, D-75392 Deckenpfronn, Germany Tel:49 (07056) 3017 Fax: 49 (0 Fax: 49 (07056) 8540

Toll Free in Germany: 0130 11 21 66 e-mail: germany@omega.com

United Kingdo ISO 9002 Certified 25 Swannington Road Broughton Astely, Leicestershire, LE9 6TU, England Tel: 44 (1455) 285520 Fax: 44 (1455) 283912

P.O. Box 7, Omega Drive Irlam, Manchester M44 5EX, England Tel: 44 (161) 777-6611 Fax: 44 (161) 777-6622

Toll Free in England: 0800-488-488 e-mail: uk@omega.com

■ WARRANTY/DISCLAIMER

OMEGA ENGINEERING, INC. warrants this unit to be free of manufacturing defects for the life of the product.

If the unit should malfunction, it must be returned to the factory for evaluation. OMEGA's Customer Service Department will issue an Authorized Return (AR) number immediately upon phone or written request. Upon examination by OMEGA, if the unit is found to be defective it will be repaired or replaced at no charge. OMEGA's WARRANTY does not apply to defects resulting from any action of the purchaser, including but no timited to mishandling, improper interfacing, operation outside of design limits, improper repair, or unauthorized modification. This WARRANTY is VOID if the unit shows evidence of having been tampered with or shows evidence of being damaged as a result of excessive corrosion; or current, heat, moisture or vibration; improper specification; misapplication; misuse or other operating conditions outside of OMEGA's control. Components which wear are not warranted, including but not limited to contact points, fuses, and triacs.

OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility OMEGA is pleased to offer suggestions on the use of its various products. However, OMEGA neither assumes responsibility for any omissions or errors nor assumes liability for any of a tresult from the use of its products in accordance with information provided by OMEGA, either verbal or written. OMEGA warrants only that the parts manufactured by it will be as specified and free of defects. OMEGA MAKES NO OTHER WARRANTIES OR REPRESENTATIONS OF ANY KIND WHATSOEVER, EXPRESSED OR IMPLIED, EXCEPT THAT OF TITLE, AND ALL IMPLIED WARRANTIES INCLUDING ANY WARRANTY OF MER-CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE HEREBY DISCLAIMED. LIMITATION OF LIABILITY: The remedies of purchaser set forth herein are exclusive and the total liability of OMEGA with respect to this order, whether based on contract, warranty, negligence, indemnification, strict liability or otherwise, shall not exceed the purchase price of the component upon which liability is based. In no event shall OMEGA be liable for consequential, incidental or special

CONDITIONS: Equipment sold by OMEGA is not intended to be used, nor shall it be used: (1) as a "Basic Component" under 10 CFR 21 (NRC), used in or with any nuclear installation or activity; or (2) in medical applications or used on humans. Should any Product(s) be used in or with any nuclear installation or activity, medical application, used on humans, or misused in any way, OMEGA assumes no responsibility as set forth in our basic WAR-RANTY/DISCLAIMER language, and additionally, purchaser will indemnify OMEGA and hold OMEGA harmless from any liability or damage whatsoever arising out of the use of the Product(s) in such a manner.

RETURN REQUEST/INQUIRIES

Direct all warranty and repair requests/inquiries to the OMEGA Customer Service Department. BEFORE RETURNING ANY PRODUCT(S) TO OMEGA, PURCHASER MUST OBTAIN AN AUTHORIZED RETURN (AR) NUMBER FROM OMEGA'S CUSTOMER SERVICE DEPARTMENT (IN ORDER TO AVOID PROCESSING DELAYS). The assigned AR number should then be marked on the outside of the return package and on any correspondence. The purchaser is responsible for shipping charges, freight, insurance and proper packaging to prevent breakage in transit

FOR WARRANTY RETURNS, please have the following information available BEFORE contacting OMEGA:

1. P.O. number under which the product was PURCHASED,

2. Model and serial number of the product under warranty, and

3. Repair instructions and/or specific problems relative to the

product

FOR **NON-WARRANTY** REPAIRS, consult OMEGA for current repair charges. Have the following information available BEFORE contacting OMEGA:

1. P.O. number to cover the COST of the repair,

Model and serial number of product, and

3. Repair instructions and/or specific problems relative to the

OMEGA's policy is to make running changes, not model changes, whenever an improvement is possible. This affords our customers the latest in OMEGA is a registered trademark of OMEGA ENGINEERING, INC.

© Copyright 1996 OMEGA ENGINEERING, INC. All rights reserved. This documentation may not be copied, photocopied, reproduced, translated,

or reduced to any electronic medium or machine-readable form, in whole or in part, without prior written consent of OMEGA ENGINEERING, INC.

y of OMEGA to comply with all worldwide safety and EMC/EMI regulations that apply. OMEGA is constantly pursuing certification of its products to the European New Approach JMEGA will add the CE mark to every appropriate device upon certification. ion contained in this document is believed to be correct but OMEGA Engineering, Inc. accepts no liability for any errors it contains, and reserves the right to alter specifications

WARNING: These product are not designed for use in, and should not be used for, patient connected applications